Effects of Temporal Discretization on Turbulence Statistics and Spectra in Numerically Simulated Convective Boundary Layers

Abstract

Six state-of-the-art large-eddy simulation codes were compared in Fedorovich et al. (Preprints, 16th American Meteorological Society Symposium on Boundary Layers and Turbulence, 2004b) for three airflow configurations in order to better understand the effect of wind shear on entrainment dynamics in the convective boundary layer CBL). One such code was the University of Oklahoma large-eddy simulation (LES) code, which at the time employed a second-order leapfrog time-advancement scheme with the Asselin filter. In subsequent years, the code has been updated to use a third-order Runge–Kutta (RK3) time-advancement scheme. This study investigates what effect the upgrade from the leapfrog scheme to RK3 scheme has on turbulence statistics in the CBL differently affected by mean wind shear, also in relation to predictions by other LES codes that participated in the considered comparison exercise. In addition, the effect of changing the Courant number within the RK3 scheme is investigated by invoking the turbulence spectral analysis. Results indicate that low-order flow statistics obtained with the RK3 scheme generally match their counterparts from simulations with the leapfrog scheme rather closely. CBL growth rates due to entrainment in the shear-free case were also similar using both timestepping schemes. It was found, however, that care should be given to the choice of the Courant number value when running LES with the RK3 scheme in the sheared CBL setting. The advantages of the largest possible (based on the stability criterion) Courant number were negated by degrading the energy distribution across the turbulence spectrum. While mean profiles and low-order turbulence statistics were largely unaffected, the entrainment rate was over-predicted compared to that reported in the original code-comparison study.

Publication
Boundary-Layer Meteorology, 153, 19–-41
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Dr. Jeremy A. Gibbs
Dr. Jeremy A. Gibbs
Research Meteorologist

My name is Jeremy Gibbs. I am a Research Meteorologist at the NOAA National Severe Storms Laboratory. My research includes computational and theoretical studies of atmospheric boundary-layer flows, turbulence modeling, land-surface modeling, parameterization of boundary-layer and surface-layer interactions, and multi-scale numerical weather prediction. I am currently working on projects to improve atmospheric models in the areas of scale-aware boundary-layer physics, heterogeneous boundary layers, and other storm-scale phenomena.