The Perdigão: Peering into Microscale Details of Mountain Winds

Abstract

A grand challenge from the wind energy industry is to provide reliable forecasts on mountain winds several hours in advance at microscale (∼100 m) resolution. This requires better microscale wind-energy physics included in forecasting tools, for which field observations are imperative. While mesoscale (∼1 km) measurements abound, microscale processes are not monitored in practice nor do plentiful measurements exist at this scale. After a decade of preparation, a group of European and U.S. collaborators conducted a field campaign during 1 May–15 June 2017 in Vale Cobrão in central Portugal to delve into microscale processes in complex terrain. This valley is nestled within a parallel double ridge near the town of Perdigão with dominant wind climatology normal to the ridges, offering a nominally simple yet natural setting for fundamental studies. The dense instrument ensemble deployed covered a ∼4 km × 4 km swath horizontally and ∼10 km vertically, with measurement resolutions of tens of meters and seconds. Meteorological data were collected continuously, capturing multiscale flow interactions from synoptic to microscales, diurnal variability, thermal circulation, turbine wake and acoustics, waves, and turbulence. Particularly noteworthy are the extensiveness of the instrument array, space–time scales covered, use of leading-edge multiple-lidar technology alongside conventional tower and remote sensors, fruitful cross-Atlantic partnership, and adaptive management of the campaign. Preliminary data analysis uncovered interesting new phenomena. All data are being archived for public use.

Publication
Bulletin of the American Meteorological Society, 100, 799–819
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Dr. Petra Klein
Dr. Petra Klein
Professor, Executive Associate Dean
Dr. Tyler M. Bell
Dr. Tyler M. Bell
Research Scientist

Tyler is a Research Associate in CIWRO working on using ground-based remote sensors and WxUAS to advance the understanding of various boundary layer processes. He is acitvely exploring ways to optimally combine data collected from WxUAS and ground-based remote sensing.

Dr. David (Dave) Turner
Dr. David (Dave) Turner
Research Scientist and Program Manager