Clarifying the baroclinic contribution to the Great Plains low-level jet frequency maximums

Abstract

The frequency and intensity of the Great Plains nocturnal low-level jet (LLJ) are enhanced by baroclinicity over the sloped terrain of the region. A classical description of baroclinic-induced diurnal wind oscillations over the Great Plains considers differential heating of the slope with respect to air at the same elevation far removed from the slope, but with buoyancy constant along the slope (Holton mechanism). Baroclinicity can also occur due to differential heating of the slope itself, which creates a gradient in buoyancy along the slope. The relative prevalence of the two types of baroclinicity in this region has received scant attention in the literature. The present study uses 19 years of data from the Oklahoma Mesonet to evaluate the characteristics of along-slope buoyancy gradients over the region. A mean negative afternoon along-slope buoyancy gradient (east–west gradient) is found over Oklahoma. The sign of this afternoon buoyancy gradient is favorable for LLJ formation, as it results in the strongest southerly geostrophic wind near the ground around sunset, which is conducive to nocturnal jet formation via the inertial oscillation mechanism. The negative afternoon buoyancy gradient is at least partially created by an east–west gradient in diurnal heating and is stronger and more consistent in the summer months, which is when LLJs are most frequent. The contribution of the along-slope buoyancy gradient to the low-level geostrophic wind was found to be as important as the contribution of the Holton mechanism. Overall, these results indicate that along-slope buoyancy gradients should be accounted for in studies of LLJ dynamics over the Great Plains.

Publication
Monthly Weather Review, 147, 3481–3493
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.