Confronting the boundary layer data gap: evaluating new and existing methodologies of probing the lower atmosphere

Abstract

It is widely accepted that the atmospheric boundary layer is drastically under-sampled in the vertical dimension. In recent years, the commercial availability of ground-based remote sensors combined with the widespread use of small, weather-sensing uncrewed aerial systems (WxUAS) has opened up many opportunities to fill this measurement gap. In July 2018, the University of Oklahoma (OU) deployed a state-of-the-art WxUAS, dubbed the CopterSonde, and the Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS) in the San Luis Valley in south-central Colorado. Additionally, these systems were deployed to the Kessler Atmospheric and Ecological Field Station (KAEFS) in October 2018. The colocation of these various systems provided ample opportunity to compare and contrast kinematic and thermodynamic observations from different methodologies of boundary layer profiling, namely WxUAS, remote sensing, and the traditional in situ radiosonde. In this study, temperature, dew point temperature, wind speed, and wind direction from these platforms are compared statistically with data from the two campaigns. Moreover, we present select instances from the dataset to highlight differences between the measurement techniques. This analysis highlights strengths and weaknesses of planetary boundary layer profiling and helps lay the groundwork for developing highly adaptable systems that integrate remote and in situ profiling techniques.

Publication
Atmospheric Measurement Techniques, 13, 3855–3872
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Dr. Tyler M. Bell
Dr. Tyler M. Bell
Research Scientist

Tyler is a Research Associate in CIWRO working on using ground-based remote sensors and WxUAS to advance the understanding of various boundary layer processes. He is acitvely exploring ways to optimally combine data collected from WxUAS and ground-based remote sensing.

Brian Greene
Brian Greene
Post-Doctoroal Researcher

My research focuses on developing and utilizing uncrewed aircraft systems (UAS) to collect observations in the planetary boundary layer. This application includes instrumentation, electronics, flight mechanics, thermodynamics, fluid mechanics, and signal processing. I also model the stable boundary layer using large-eddy simulations to better understand how observations from UAS can best represent turbulence across the simulated domain.

Dr. Petra Klein
Dr. Petra Klein
Professor, Executive Associate Dean
Matt Carney
Matt Carney
SoM Instrumentation Tech